
Journal of Statistical Physics, Vol. 102, Nos. 1�2, 2001

Entropy-Driven Phase Transitions in Multitype
Lattice Gas Models

Hans-Otto Georgii1 and Valentin Zagrebnov2

Received February 23, 2000; revised July 10, 2000

In multitype lattice gas models with hard-core interaction of Widom�Rowlinson
type, there is a competition between the entropy due to the large number of
types, and the positional energy and geometry resulting from the exclusion rule
and the activity of particles. We investigate this phenomenon in four different
models on the square lattice: the multitype Widom�Rowlinson model with
diamond-shaped resp. square-shaped exclusion between unlike particles, a Widom�
Rowlinson model with additional molecular exclusion, and a continuous-spin
Widom�Rowlinson model. In each case we show that this competition leads to
a first-order phase transition at some critical value of the activity, but the
number and character of phases depend on the geometry of the model. We also
analyze the typical geometry of phases, combining percolation techniques with
reflection positivity and chessboard estimates.

KEY WORDS: First-order phase transition; entropy-energy conflict;
staggered phase; Widom�Rowlinson lattice gas; plane-rotor model; ferrofluid;
percolation; chessboard estimate; reflection positivity.

1. INTRODUCTION

Although the most familiar examples of phase transitions in lattice models
originate from a degeneracy of ground states and therefore occur at low
temperatures, this is not the only situation in which phase transitions can
occur. Another possible source of criticality is a conflict of energy and
entropy. This was noticed first by Dobrushin and Shlosman(6) in the case
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of an asymmetric double-well potential with two (sharp resp. mild) local
minima separated by a barrier. They found that for some specific tem-
perature energy and entropy attain a balance leading to the coexistence of
high- and low-temperature phases corresponding to the two wells; cf. also
the survey of Shlosman(18) and Section 19.3.1 of Georgii. (9) Later on,
Kotecky� and Shlosman(11) observed that such a first-order phase transition
can occur even in the absence of an energy barrier, provided there is an
``explosion'' of entropy. They demonstrated this in particular on the
prototypical case of the q-state Potts model on Zd for large q, showing that
for a critical temperature there exist q distinct ordered low-temperature
phases as well as one disordered high-temperature phase; see also ref. 18
and Section 19.3.2 of ref. 9.

This paper has the objective of studying entropy-driven first-order
phase transitions of similar kind in multitype lattice gas models with type-
dependent hard core interaction. In such models the crucial parameter is
the activity instead of temperature, and the entropy-energy conflict turns
into a competition between the entropy of particle types and the positional
energy and geometry resulting from the exclusion rule and the activity of
particles. One is asking for a critical activity with coexistence of low-density
and high-density phases.

The basic example of this kind is the multicomponent Widom�Rowlinson
lattice gas model investigated first by Runnels and Lebowitz(17) in 1974 and
studied later (theoretically and numerically) by Lebowitz et al., (13) cf. also
ref. 14. If the number q of types is large enough (the numerical estimates
give q�7), there exist three different regimes: besides the low-density
uniqueness regime and a high-density regime with q ``demixed'' phases for
z>zc(q), there exists an intermediate domain of activities z0(q)<z<zc(q)
with two ``crystal'' (or ``staggered'') phases with an occupation pattern of
chessboard type, and the phase transition at zc(q) is of first order. The
transition between staggered and demixed phases at zc(q) is again entropy-
driven: in the staggered phases the type entropy wins, with the effect of an
entropic repulsion of positions forcing the particles onto a sublattice,
whereas in the demixed phases the particles gain energy and positional
freedom but loose their type entropy. The same kind of phenomenon has
also been discovered for a class of spin systems with annealed dilution
(including diluted Potts and plane rotor models).(4, 5)

The aim of the present paper is to analyze the interplay of type
entropy and the geometry induced by the lattice and the exclusion rule.
While we stick to the integer lattice Zd (and for simplicity in fact to the
case d=2), we vary the exclusion rule in order to gain some insight into
the geometric effects involved. We investigate and compare four different
models:
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1. the standard multitype Widom�Rowlinson model;

2. a multitype Widom�Rowlinson model with nearest-neighbor and
next-nearest neighbor exclusion between particles of different type;

3. a multitype Widom�Rowlinson model with additional type-inde-
pendent hard-core interaction between next-nearest particles;

4. a ferrofluid model of oriented particles with exclusion between
neighboring but not sufficiently aligned particles. (Similar continuous-spin
counterparts of models 2 and 3 will also be considered.)

We show that in each of these examples an entropy-driven first-order phase
transition occurs, but the number and specific characteristics of coexisting
phases are different in all cases. These specific characteristics can be
described in terms of the random geometry of occupied lattice sites and
particle types. To achieve this we follow the ideas described in Chaps. 18
and 19 of Georgii, (9) combining percolation techniques with the (trivial)
reflection positivity in lines through lattice sites and the resulting
chessboard estimate.(9) This approach is quite similar to that exploited in
refs. 4�6, 11, and 18. The latter makes the same use of reflection positivity,
but the first-order transition is derived from an ergodic decomposition in
terms of suitable observables (rather than a tail decomposition in terms of
percolation events as in our method), and thus gives no direct information
on the random geometry of phases. An alternative technique to derive our
results (at least for models 1 to 3) is the Pirogov�Sinai theory; for model
1 it has been used in ref. 13. Although this technique might allow to answer
a few questions we left open, we leave it to future work to supply the
necessary details. This paper is organized as follows. In Section 2 we
introduce the four models and present our results. The proofs follow in
Sections 3 to 6. The general scheme is explained in detail for model 1, the
standard Widom�Rowlinson lattice model. In the other cases we only
indicate the necessary changes.

2. MODELS AND RESULTS

2.1. The Multitype Widom�Rowlinson Lattice Gas

This model describes a system of particles of q different types
(``colors'') which are allowed to sit on the sites of the square lattice Z2.
(For simplicity we stick to the two-dimensional case; an extension to
higher dimensions is straightforward, cf. Chap. 18 of ref. 9 or ref. 8.) At
each lattice site we have a random variable _ i taking values in the set
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E=[0, 1,..., q]. The equality _i=0 means that site i is empty, and _i=
a # [1,..., q] says that i is occupied by a particle of color a. Particles of
different color interact by a hard-core repulsion: they are not allowed to sit
next to each other. There is no interaction between particles of the same
color. This means that the formal Hamiltonian has the form

H(_)= :
(ij)

U(_i , _j ) (1)

where the sum extends over all nearest-neighbor pairs (ij) /Z2 of lattice
sites (i.e., |i& j |=1), and the potential U is given by

U(_i , _j )={�
0

if 0{_i{_ j{0
otherwise

(2)

This model is a lattice analog of the continuum two-species model of
Widom and Rowlinson, (19) and was first introduced by Lebowitz and
Gallavotti(12) (for q=2) and Runnels and Lebowitz(17) (for general q).

Since U is either 0 or �, the temperature does not play any role, and
the only energetic parameter is the activity z>0 which governs the overall
particle density; we assume that the activity does not depend on the particle
color. Accordingly, the Gibbs distribution in a finite region 4/Z2 with
boundary condition ' in 4c=Z2"4 is given by

+z, q
4, '(_)=1[_#' off 4](Zz, q

4, ')&1 zN4(_) exp _& :
(ij) & 4{<

U(_i , _ j )& (3)

where N4(_)=|[i # 4 : _i{0]| is the number of particles in 4, and Zz, q
4, ' is

a normalizing constant.
Alternatively, we may think of +z, q

4, ' as obtained by conditioning a
Bernoulli measure on the set of admissible configurations. Let

0=[_ # EZ2
: \(ij) _i _j=0 or _i=_j ]

be the set of all admissible configurations on Z2. Given any such configura-
tion _ # 0 and any subset 4 of Z2, we write _4 for the restriction of _ to
4. We also write 04, ' for the set of all admissible configurations _ # E4 in
4 which are compatible with some ' # 0, in the sense that the composed
configuration _'4c belongs to 0. In particular, we write 04=04, 0 for the
set of all admissible configurations in 4, which are compatible with the
empty configuration 0 outside 4. It is then easy to see that

+z, q
4, '=?z, q

4 ( } | 04, ')
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where ?z, q
4 =}i # 4 ?z, q

i is the 4-product of the measures ?z, q
i =(1�(1+qz),

z�(1+qz),..., z�(1+qz)) on E.
Given the Gibbs distributions +z, q

4, ' , we define the associated class
G(z, q) of (infinite volume) Gibbs measures on 0 in the usual way.(9) Our
main result below shows that for large q there exist two different activity
regimes in which G(z, q) contains several phases of quite different behavior.
These regimes meet at a critical activity zc(q) and produce a first-order
phase transition.

The different phases admit a geometric description in percolation
terms. Let Z2 be equipped with the usual graph structure (obtained by
drawing edges between sites of Euclidean distance 1). Given any _ # 0,
a subset S of Z2 will be called an occupied cluster if S is a maximal connected
subset of [i # Z2 : _i{0], and an occupied sea if, in addition, each finite
subset 2 of Z2 is surrounded by a circuit (i.e., closed lattice path) in S. In
other words, an occupied sea is an infinite occupied cluster with intersper-
sed finite ``islands.'' If in fact _i=a for all i # S we say S is an occupied sea
of color a. We consider also the dual graph structure of Z2 with so-called
V edges between sites of distance 1 or - 2, and the associated concept of
V connectedness. An even occupied V sea is a maximal V connected subset of
[i=(i1 , i2) # Z2 : i1+i2 even, _ i{0] containing V circuits around arbitrary
finite sets 2. Likewise, an odd empty V sea is a maximal V connected subset
of [i=(i1 , i2) # Z2 : i1+i2 odd, _i=0] surrounding any finite 2.

Theorem 2.1. If the number q of colors exceeds some q0 , there
exists an activity threshold zc(q) # ]q�5, 5q[ and numbers 0<=(q)<1�3
with =(q) � 0 as q � � such that the following hold:

(i) For z>zc(q), there exist q distinct translation invariant
``colored'' phases +a # G(z, q), a # [1,..., q]. Relative to +a , there exists
almost surely an occupied sea of color a containing any given site with
probability at least 1&=(q).

(ii) For q0 �q�z<zc(q), there exist two distinct ``staggered'' phases
+even , +odd # G(z, q) invariant under even translations. Relative to +even

there exist almost surely both an even occupied V sea and an odd empty
V sea, and any two adjacent sites belong to these V seas with probability at
least 1&=(q). In addition, all occupied clusters are finite almost surely, and
their colors are independent and uniformly distributed conditionally on
their position. +odd is obtained from +even by a one-step translation.

(iii) At z=zc(q), a first-order phase transition occurs, in the sense
that q+2 distinct phases +even , +odd , +1 ,..., +q # G(zc(q), q) coexist which
enjoy the properties above.
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The preceding theorem can be summarized by the following phase
diagram.

q+2
phases: 1 2 staggered q colored

|www } } } wwwwwwwww|wwwwwwww� z
0 zc(q)

We continue with a series of comments.

Remark 2.1. (1) The existence of staggered phases in an inter-
mediate activity region was first observed by Runnels and Lebowitz.(17) As
will become apparent later, this is a consequence of the fact that the lattice
Z2 is bipartite and the interaction is nearestneighbor. According to
Theorem 2.1, for large q the staggered regime extends up to the fully
ordered regime, and the transition from the staggered regime to the
ordered regime at zc(q) is of first order. This result (disproving a conjecture
in ref. 17) has already been obtained before by Lebowitz, Mazel, Nielaba
and S8 amaj.(13) While their argument relies on Pirogov�Sinai theory (which
even gives the asymptotics of zc(q)), we offer here a different proof based
on reflection positivity which is quite elementary and can easily be adapted
to our other models (including a continuous-spin variant of the present
model).

(2) There are two kinds of ordering to be distinguished: positional
order and color-order. The colored (or ``demixed'') phases +1 ,..., +q show
color-order but no positional order. (The impression of positional order is
a delusion coming from the lattice regularity.) Their high density takes
advantage of the chemical energy of particles (i.e., of the activity z.) On the
other hand, the staggered (or ``crystal'') phases +even , +odd exhibit positional
order but color-disorder. Positional and color-disorder occurs in the
uniqueness regime at sufficiently low activities.

(3) The first-order transition at zc(q) manifests itself thermodynami-
cally by a jump of the particle density as a function of the activity. In fact,
zc(q) can be characterized as the unique value where the density jumps
over the level 2�3, cf. Lemma 3.6.

(4) For small z there exists only one Gibbs measure in G(z, q). For
example, using disagreement percolation one easily finds that this is the
case when qz<pc �(1& pc), where pc is the Bernoulli site percolation
threshold for Z2; see refs. 2 and 10 for more details. We do not know
whether the uniqueness regime extends right up to the staggered regime. As
will be explained in the next comment, this question is related to the
behavior of the hard-core lattice gas.
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(5) As was already noticed in refs. 17 and 13, the occupation struc-
ture of the large-q Widom�Rowlinson model at activity z is approximately
described by the hard-core lattice gas with activity `=qz. This becomes
evident from the following argument (which is more explicit than those in
refs. 17 and 13). Consider the Gibbs distribution +4, per of our model in a
rectangular box 4 with periodic boundary condition. (This boundary con-
dition is natural, since later on we will only look at phases appearing in the
extreme decomposition of infinite volume limits of +4, per ; we could also use
empty or monochromatic boundary conditions instead.) Let �4, per be
the image of +4, per under the projection _ � n=(n i ) i # 4=(1[_i{0]) i # 4 from
E4 to [0, 1]4 mapping a configuration of colored particles onto the
occupation pattern. �4, per is called the site-random-cluster distribution, see
Section 6.7 of ref. 10. Its conditional probabilities are given by the formula

�4, per(n i=1 | n4"[i ])=
qz

qz+q}(i, n)

where }(i, n) is the number of clusters of [ j # 4"[i ] : nj=1] meeting a
neighbor of i. Now, since }(i, n)=0 if and only if all neighbors of i are
empty, this conditional probability tends to the one of the hard-core lattice
model with activity ` when q � � and `=qz stays fixed. Unfortunately,
this result is not sufficient to conclude that in this limit the transition point
from the unique to the staggered phase converges to that of the hard-core
lattice gas, although this seems likely and is suggested by simulations.(13)

(6) One may ask whether the monotonicity of the transition from the
staggered to the ordered regime can be deduced from stochastic
monotonicity properties of the site-random-cluster model, as is possible in
the Potts model. Unlike in the standard (bond) random-cluster model,
such a stochastic monotonicity is not available.(3) To obtain the existence
of a unique transition point zc(q) we will therefore use the convexity of the
pressure, which implies that the particle density is an increasing function of z.

(7) As is often the case in this kind of context, our bounds on q0 are
not very useful. They only allow us to conclude that we can take e.g., q0=
2 } 1085. Note that for small q the ordered regime still exists, (17) but for q=2
there is no staggered regime but instead a direct second order transition
from the gas phase to the ordered phase. For this and more information
about the minimal q at which the staggered phase appears see refs. 13 and 14.

2.2. The Square-Shaped Widom�Rowlinson Lattice Gas

The standard Widom�Rowlinson model considered above is defined
by the exclusion rule that no two particles of different color may occupy
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adjacent sites. Equivalently, one may think of the particles as having the
shape of the diamond [x # R2 : &x&1<1], and diamonds of different color
are required to be disjoint.

In this section we want to study a variant with different geometry: we
identify a particle at position i # Z2 with the suitably colored square
[x # R2 : &x&i&�<1], and we stipulate that squares of different color are
disjoint, while squares of the same color may overlap. Alternatively, this
assumption amounts to replacing Z2 by its matching dual (Z2)*, which is
obtained from Z2 by keeping all nearest-neighbor bonds and adding bonds
between diagonal neighbors of Euclidean distance - 2; for lack of a
generally accepted name we call this lattice the face-crossed square lattice.
Accordingly, we say that two sites i, j # Z2 are V adjacent if |i& j |=1 or
- 2, and we write (ij)* for such pairs of sites. Saying that squares of
different colors are disjoint is then equivalent to saying that particles of
different color do not sit on V adjacent sites.

The point of considering this model is that the square-shape of par-
ticles fits with the geometry of Z2 in a way quite different from the
diamond-shape of particles in the standard Widom�Rowlinson model. As
a consequence, the disordered phase shows more positional randomness,
and the staggered (or crystalline) phases disappear.

We now turn to precise statements. The formal Hamiltonian of the
square-shaped Widom�Rowlinson model is analogous to (1),

H(_)= :
(ij)*

U(_i , _j )

with the same pair interaction U as in (2). The variables _i still take values
in the set E=[0, 1,..., q]. We then can introduce the same definitions as
in Section 2.1, only replacing (ij) by (ij)* at all proper places. For
simplicity, we refrain from adding V's to the quantities so defined. In par-
ticular, we write again G(z, q) for the set of Gibbs measures in the present
square-shaped model.

Given a configuration _ # 0, we call a subset S of Z2 an occupied
V cluster if S is a maximal V connected subset of [i # Z2 : _i{0]. Such an
S may be visualized as the connected component in R2 of the union of all
squares with centers in S. We say that two disjoint square-shaped particles
are contiguous if they touch each other along at least one half of a side (i.e.,
if their centers have Euclidean distance 2 or - 5), and are separated by two
empty sites. A set S of pairwise disjoint square particles will be called a
contiguity sea if it is maximal connected relative to the contiguity relation,
and the union of their closures surrounds each bounded set. Our result for
this model is the following.

42 Georgii and Zagrebnov



Theorem 2.2. If q exceeds some sufficiently large q0 , there exist a
critical activity zc(q) # ]q1�3�3, 3q1�3[ and numbers 0<=(q)<1�3 with
=(q) � 0 as q � � such that the following hold:

(i) For z>zc(q), there exist q distinct translation invariant
``colored'' phases +a # G(z, q), a # [1,..., q]. Relative to +a , there exists
almost surely an occupied sea of color a containing any given site with
probability at least 1&=(q).

(ii) For q0�q�z<zc(q), there exists a translation invariant disor-
dered phase +dis # G(z, q) such that with probability 1 all occupied
V clusters are finite, independently and randomly colored, and surrounded
by a contiguity sea. Moreover, +dis(_i{0)<1�4+=(q) for all i.

(iii) At z=zc(q), a first-order phase transition occurs, in the sense
that there exist q+1 distinct phases +dis , +1 ,..., +q # G(zc(q), q) exhibiting
the properties above.

In short, we have the following phase diagram:

q+1
phases: 1 disordered q colored

|www } } } wwwwwwww|wwwwwww� z
0 zc(q)

Remark 2.2. (1) The first-order transition at zc(q) manifests itself
thermodynamically by a jump of the particle density from a value close to
1�4 to a value close to 1.

(2) The behavior of the square-shaped Widom�Rowlinson model dif-
fers from that of the standard, diamond-shaped Widom�Rowlinson model
in that there are no staggered phases but instead only one disordered phase
showing not only color-disorder but also positional disorder. In fact, we
expect that this disordered phase is the unique Gibbs measure for any
z<zc(q), although this does not follow from our methods. (Just as in
Remark 2.1 (5), one can see that for large q the square-shaped Widom�
Rowlinson model is related to the square-shaped hard-core lattice gas. It
seems that the latter model does not exhibit a phase transition, but we are
not aware of any proof.)

(3) The first-order transition at zc(q) implies a percolation transition
from an empty sea in the disordered phase to an occupied sea in the
colored phases. In spite of the supposed uniqueness of the Gibbs measure
in the whole range [0, zc(q)[, this interval contains a further percolation
threshold, namely a critical value for the existence of a contiguity sea.
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Indeed, for sufficiently small z one can use disagreement percolation(2, 10) to
show the uniqueness of the Gibbs measure and the existence of a sea of
empty plaquettes; the latter excludes the existence of a contiguity sea.
However, it is far from obvious that a contiguity sea will set on at a well-
defined activity. This is because neither the existence of a contiguity sea is
an increasing event, nor the site-random cluster distributions (which can
also be used in the present case) are stochastically monotone in z, cf.
Remark 2.1 (6). We note that a similar percolation transition occurs also
in the square-shaped hard-core lattice gas;(7) this shows again that the
latter describes the limiting behavior of our model in this regime.

2.3. A Widom�Rowlinson Model with Molecular Hard Core

Another way of changing the geometry of the Widom�Rowlinson
model is to introduce a molecular (i.e., color-independent) hard-core inter-
action between particles. In this section we will discuss a model variant of
this kind.

As before, the underlying lattice is still the square lattice Z2, and the
state space at each lattice site is the set E=[0, 1,..., q]. The formal
Hamiltonian is of the form

H(_)= :
|i& j |=1

8(_i , _ j )+ :
|i& j |=- 2

U(_i , _j ) (4)

here 8, the nearest-neighbor molecular hard-core exclusion, is given by

8(_i , _j )={�
0

if _i_ j{0,
otherwise

and the next-nearest neighbor color repulsion U is still defined by (2). The
main effect of the molecular hard core is a richer high-density phase
diagram containing 2q phases with color-order and staggered positional
order. The low-density regime is disordered both in the sense of color and
position, as in the case of the square-shaped Widom�Rowlinson model.
The transition between these regimes is still of first order, though the posi-
tional order of the high-density phases is an impediment for this to occur.
We do not repeat the definitions of admissible configurations and of Gibbs
measures, which are straightforward.

Theorem 2.3. If q�q0 for a suitable q0 , there exist a threshold
zc(q) # ]q�18, 18q[ and numbers 0<=(q)<1�5 with =(q) � 0 as q � � such
that the following hold:
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(i) For z>zc(q) there exist 2q distinct colored and staggered phases
+a, even , +a, odd # G(z, q), a # [1,..., q], which are invariant under even trans-
lations. Relative to +a, even there exist almost surely both an even occupied
V sea of color a and an odd empty V sea, and any two adjacent sites belong
to these V seas with probability at least 1&=(q). +a, odd is obtained from
+a, even by a one-step translation.

(ii) For q1�7
0 �q�z<zc(q), there exists a translation invariant dis-

ordered phase +dis # G(z, q) such that with probability 1 all occupied
V clusters are finite, independently colored with uniform distribution, and
enclosed by a contiguity sea. Also, +dis(_i{0)<1�4+=(q) for all i.

(iii) At z=zc(q), a first-order phase transition occurs, in the sense
that there coexist 2q+1 distinct phases +dis , +1, even , +1, odd ,..., +q, even ,
+q, odd # G(zc(q), q), with the properties above.

We summarize this theorem by the following phase diagram:

2q+1
phases: 1 disordered 2q staggered colored

|www } } } wwwwwwww|wwwwwwwwwwww� z
0 zc(q)

Remark 2.3. (1) The first-order transition at zc(q) manifests itself
thermodynamically by a jump of the particle density from a value close to
1�4 to a value close to 1�2.

(2) The Widom�Rowlinson model with molecular hard-core may be
viewed as a combination of a lattice gas of hard diamonds and the square-
shaped Widom�Rowlinson model. Its high-density regime inherits the
staggered occupation pattern from the former, and the color order from the
latter. The effect of colors is still strong enough to produce a first-order
transition, which is absent in the pure hard-diamonds model.(13) Just as
in the case of Theorem 2.2, the low density regime is governed by the
behavior of the square-shaped hard-core lattice gas. Indeed, it is not dif-
ficult to develop a random-cluster representation of the model and to show
that its conditional probabilities converge to that of the square-shaped
lattice gas when q � � but qz remains fixed; cf. Remark 2.1 (5). Mutatis
mutandis, the comments in Remark 2.2 apply here as well.

(3) One may ask what happens if we interchange the rôles of 8 and
U in the Hamiltonian of Eq. (4), i.e., if there is a molecular hard core
between diagonal neighbors of distance - 2, and a Widom�Rowlinson
intercolor repulsion between nearest particles of distance 1. In this case it
is not hard to see that for any q�2 and sufficiently large z there exist four
different phases with positional order but color disorder. One of these

45Entropy-Driven Phase Transitions in Multitype Lattice Gas Models



phases (to be called the even vertical phase) has almost surely a sea of sites
i=(i1 , i2) # Z2 which are occupied when i1 is even, and empty when i1 is
odd. The other three phases are obtained by translation and�or interchange
of coordinates. However, it seems that in this case the geometry of inter-
action does not exhibit the properties leading to a first-order transition, so
that the transition to the low density regime is of second order. We will
return to this point at the end of Section 5.

2.4. A Continuous-Spin Widom�Rowlinson Model

The multitype Widom�Rowlinson lattice model may be viewed as a
diluted clock model for which each lattice site is either empty or occupied
by a particle with an orientation in the discrete group of qth roots of unity.
This suggests considering the following plane-rotor model of oriented par-
ticles which may serve as a simple model of a ferrofluid or liquid crystal.

Consider the state space E=[0] _ S1, equipped with the reference
measure &=$0+*, where * is normalized Haar measure on the circle S 1.
As before, the equality _i=0 means that site i is empty, while _i=a # S1

says that i is occupied by a particle with orientation a. The formal
Hamiltonian is again given by (1), where the pair interaction U is now
defined by

U(_i , _j )={�
0

if _ i , _ j # S 1, _i } _j�cos 2?:
otherwise

for some angle 0<:<1�4. This potential forces adjacent particles to have
nearly the same orientation; the model may therefore be viewed as a
diluted version of the Patrascioiu�Seiler model.(15, 1) The parameter : will
play the same rôle as 1�q did before. The Gibbs distributions +z, :

4, ' in a finite
region 4/Z2 with boundary condition ' and activity z>0 are defined by
their densities with respect to the product measure &4, which are again
given by the right-hand side of Eq. (3). We write G(z, :) for the associated
set of Gibbs measures. Since U preserves the O(2)-symmetry of particle
orientations, it seems likely that each such Gibbs measure is invariant
under simultaneous rotations of particle orientations; unfortunately, the
Mermin�Wagner�Dobrushin�Shlosman theorem (cf. Theorem (9.20) of
ref. 9) does not apply to the present model.

Theorem 2.4. If : is less than some sufficiently small :0 , there exist
a critical activity zc(:) # ]:&2�18, 5:&2[ and numbers 0<=(:)<1�3 with
=(:) � 0 as : � 0 such that the following hold:
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(i) For z>zc(:) there exists a dense ``ordered'' phase +ord # G(z, :)
exhibiting the translation invariance and O(2)-symmetry of the model.
Relative to +ord , there exists almost surely an occupied sea containing any
fixed site with probability at least 1&=(:) (and on which the orientations
of adjacent particles differ only by the angle 2?:).

(ii) For :&1
0 �z<zc(:), there exist two distinct ``staggered'' phases

+even , +odd # G(z, :) which are invariant under particle rotations and even
translations. Almost surely with respect to +even there exist both an even
occupied V sea and an odd empty V sea, and any two adjacent sites belong
to these V seas with probability at least 1&=(q). In addition, all occupied
clusters are almost surely finite, and conditionally on their position the dis-
tribution of orientations is invariant under simultaneous rotations of all
spins in a single occupied cluster. +odd is obtained from +even by a one-step
translation.

(iii) At z=zc(:), a first-order phase transition occurs, in the sense
that there exist three distinct phases +even , +odd , +ord # G(zc(:), q) with the
properties above.

The theorem above shows that the present model behaves similarly to the
related finite-energy model considered in ref. 5. Presumably +ord is the
unique Gibbs measure for z>zc(:), and there is a second-order transition
from the staggered regime to the low-activity uniqueness regime. We thus
have the following phase diagram.

3
phases: 1 2 staggered ordered

|www } } } wwwwwww|wwwwww� z
0 zc(q)

Remark 2.4. The model above is a continuous-spin counterpart of
the standard Widom�Rowlinson model considered in Section 2.1. It is
rather straightforward to modify our techniques for investigating analogous
continuous-spin variants of the square-shaped Widom�Rowlinson model
and of the model with diagonal molecular hard core. In the first case, we
obtain a phase diagram of the form

2
phases: 1 disordered ordered

|www } } } wwwwwww|wwwwww� z
0 zc(q)
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and in the second case we find

3
phases: 1 disordered 2 staggered ordered

|www } } } wwwwwww|wwwwwwwwwww� z
0 zc(q)

The details are left to the reader.

3. PROOF OF THEOREM 2.1

The proof of all four theorems follows the general scheme described in
Chaps. 18 and 19 of Georgii, (9) which is similar in spirit to that of
Dobrushin and Shlosman(6) and Kotecky� and Shlosman.(11) This scheme
consists of two parts: a model-specific contour estimate implying percola-
tion of ``good plaquettes,'' and a general part deducing from this percola-
tion the first-order transition and the properties of phases. We describe the
general part first and defer the contour estimate to a second subsection.
Many of the details presented here for the Widom�Rowlinson model carry
over to the other models, so that for the proofs of Theorems 2.2 to 2.4 we
only need to indicate the necessary changes. We note that our arguments
can easily be extended to the higher dimensional lattices Zd using either the
ideas of Chap. 18 of ref. 9 or those of ref. 8.

3.1. Competition of Staggered and Ordered Plaquettes

We consider the standard plaquette C=[0, 1]2 in Z2 as well as its
translates C+i, i # Z2. Two plaquettes C+i and C+ j will be called adja-
cent if |i& j |=1, i.e., if C+i and C+ j share a side. We are interested in
plaquettes with a specified configuration pattern. Each such pattern will be
specified by a subset F of 0C , the set of admissible configurations in C. For
any such F we define a random set V(F ) as follows. Let r1 and r2 be the
reflections of C in the vertical resp. horizontal line in the middle of C, and
ri=r i1

1 r i2
2 the reflection associated to i=(i1 , i2) # Z2. We then let

V(F ) : _ � [i # Z2 : ri_C+i # F ] (5)

be the mapping associating with each _ # 0 the set of plaquettes on which
_ shows the pattern specified by F. (The reflections ri need to be introduced
for reasons of consistency: they guarantee that two adjacent plaquettes may
both belong to V(F ) even when F is not reflection invariant, as e.g., the sets
Geven and Godd below.)

48 Georgii and Zagrebnov



We are interested in the case when F is one of the following sets of
``good'' configurations on C. These sets are distinguished according to their
occupation pattern. Describing a configuration on C by a 2_2 matrix in
the obvious way, we define

v Gstag=Geven _ Godd#[( 0
a

b
0) : 1�a, b�q] _ [( a

0
0
b) : 1�a, b�q], the

set of all staggered configurations with ``diagonal occupations.''

v Gord=�1�a�q Ga=�1�a�q [( a
a

a
a)], the set of all fully ordered

configurations with four particles of the same color.

v G=Gstag _ Gord , the set of all good configurations.

Our first objective is to establish percolation of good plaquettes, i.e., of
plaquettes in which the configuration is good; the other plaquettes will
be called bad. We want to establish this kind of percolation for suitable
Gibbs measures uniformly in the activity z (provided z is not too small).
A suitable class of Gibbs measures is that obtained by infinite-volume
limits with periodic boundary conditions.

For any integer L�1 we consider the rectangular box

4L=[&12L+1,..., 12L]_[&14L+1,..., 14L] (6)

in Z2 of size v(L)=24L_28L. (The reason for this particular choice will
become clear in the proofs of Lemmas 3.7 and 3.8.) We write +z, q

L, per for the
Gibbs distribution in 4L with parameters z, q and periodic boundary con-
dition, and Gper(z, q) for the set of all limiting measures of +z, q

L, per as L � �
(relative to the weak topology of measures). The basic result is the follow-
ing contour estimate which shows that bad plaquettes have only a small
chance to occur.

Proposition 3.1. For any $>0 there exists a number q0 # N such
that

+(2 & V(G)=<)�$ |2| (7)

whenever q�q0 , zq�q0 , + # Gper(z, q), and 2/Z2 is finite.
In the above, [2 & V(G)=<] is a short-hand for the event consisting

of all _ for which all plaquettes C+i, i # 2, are bad; similar abbreviations
will also be used below.

The proof of the proposition takes advantage of reflection positivity
and the chessboard estimate, cf. Corollary (17.17) of ref. 9, and is deferred
to the next section. We mention here only that q0 is chosen so large that

$(q)#q&1�56+q&1�12+q&1�4+q&1�2�$ (8)
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when q�q0 . It will be essential in the following that the contour estimate
is uniform for z�q0 �q.

As an immediate consequence of the contour estimate we obtain the
existence of a sea of good plaquettes. We will say that a set of plaquettes
forms a sea if the set of their left lower corners is connected and surrounds
each finite set. It is then evident that the existence of a sea of completely
occupied plaquettes implies the existence of an occupied sea; likewise, the
existence of a sea of plaquettes which are occupied on their even points
implies the existence of an even occupied V sea. In this way, the concept
of a sea of plaquettes is general enough to include all concepts of seas
introduced in Section 2. Specifically, for any F/0C we define S(F ) as
the largest sea in V(F ) whenever V(F ) contains a sea, and let S(F )=<
otherwise.

For z�q0 �q we write G� per(z, q) for the set of all accumulation points
(in the weak topology) of measures +n # Gper(zn , q) with zn � z, zn�q0 �q.
The graph of the correspondence z � G� per(z, q) is closed; this will be
needed in the proof of property (A2) below.

Proposition 3.2. For any =>0 there exists a number q0 # N such
that

+(0 # S(G))�1&=

whenever + # G� per(z, q), q�q0 and z�q0 �q.

Proof. Note first that the contour estimate (7) involves only local
events and therefore extends immediately to all + # G� per(z, q). The state-
ment then follows directly from Proposition 3.1 together with Lemmas
(18.14) and (18.16) of ref. 9. The number $ has to be chosen so small that
4$(1&5$)&2�=. K

What is the advantage of having a sea of good plaquettes? The key
property is that the sets Gstag and Gord have disjoint side-projections. That
is, writing b=[(0, 0), (1, 0)] for the two points on the bottom side of C we
have

_ # Gstag , _$ # Gord O _b{_$b

and similarly for the other sides of C. As a consequence, if two adjacent
plaquettes are good then they are both of the same type, either staggered
or ordered. Therefore each sea of good plaquettes is either a sea of
staggered plaquettes, or a sea of ordered plaquettes. Hence

[S(G){<]=[S(Gstag){<] _ [S(Gord){<]
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and the two sets on the right-hand side are disjoint. Moreover, the sets
Geven and Godd also have disjoint side-projections, and so do the sets Ga ,
1�a�q. Therefore, the event [S(Gstag){<] splits into the two disjoint
subevents [S(Geven){<] and [S(Godd){<], and [S(Gord){<] splits
off into the disjoint subevents [S(Ga){<], 1�a�q. In other words, each
sea of good plaquettes has a characteristic occupation pattern or color
corresponding to a particular phase, and we only need to identify the
activity regimes for which the different phases do occur.

To this end we fix any =>0. We will need later that =<1�6. As in
the proof of Proposition 3.2, we choose some 0<$<1�25 such that
4$(1&5$)&2�=, and we let q0 be so large that condition (8) holds for all
q�q0 . For such q0 and q we consider the two activity domains

Astag=[z�q0�q : +(0 # V(Gstag))�+(0 # V(Gord)) for some + # G� per(z, q)]

and

Aord=[z�q0 �q : +(0 # V(Gord))�+(0 # V(Gstag)) for some + # G� per(z, q)]

Our next result shows that these sets describe the regimes in which
staggered resp. ordered phases exist. The mean particle density *(+) of a
measure + which is periodic under translations with period 2 is defined by

*(+)=+(NC)�|C | (9)

recall that NC is the number of particles in C.

Proposition 3.3. (a) For each z # Astag there exist two ``staggered''
Gibbs measures +even , +odd # G(z, q) invariant under even translations of Z2

and permutations of particle colors. +even-almost surely we have S(Geven)
{<, and all occupied clusters are finite and have independently dis-
tributed random colors. In addition, +even(0 # S(Geven))�1&2=, and in
particular *(+even)� 1

2+=. +odd has the analogous properties.

(b) For each z # Aord there exist q ``colored'' translation invariant
Gibbs measures +a # G(z, q), a # [1,..., q]. Each +a satisfies +a(S(Ga){<)=1,
+a(0 # S(Ga))�1&2=, and in particular has mean particle density *(+a)�
1&2=.

Proof. (a) Let z # Astag be given and + # G� per(z, q) be such that
+(0 # V(Gstag))�+(0 # V(Gord)). Then +(0 # V(Gord))�1�2 and therefore

+(0 # S(Gstag))=+(0 # S(G), 0 � V(Gord))

�1&=& 1
2= 1

2&=>0
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But Gstag splits into the two parts Geven and Godd which are related to each
other by the reflection in the line [x1=1�2], and + is invariant under this
reflection. Hence

p#+(0 # S(Geven))=+(0 # S(Godd))� 1
2 ( 1

2&=)>0

We can therefore define the conditional probabilities +even=
+( } | S(Geven){<) and +odd=+( } | S(Godd){<). Since the events in the
conditions are tail measurable, these measures belong to G(z, q). It is clear
that these conditional probabilities inherit all common invariance proper-
ties of + and the conditioning events. Moreover, we find

+(S(Geven){<)=
1
2

+(S(Gstag){<)

�
1
2

+(0 # S(Gstag))+
1
2

+(0 � S(G))

�p+
=
2

and therefore

+even(0 # S(Geven))�
p

p+=�2
�1&2=

In particular, it follows that

*(+even)� 1
2 +even(0 # V(Geven))++even(0 � V(Geven))� 1

2+=

Finally, we show that +even -almost surely all occupied clusters are finite,
and their colors are conditionally independent and uniformly distributed
when all particle positions are fixed. Indeed, since +even(S(Geven){<)=1
there exists +even -almost surely an odd empty V sea. This means that any
box 2 is almost surely surrounded by an empty V circuit. On the one hand,
this shows that all occupied clusters must be finite almost surely. On the
other hand, for any '>0 we can find a box 2$#2 containing an empty
V circuit around 2 with probability at least 1&'. Let 1 be the largest set
with 2/1/2$ such that there are no particles on its outer boundary �1;
if no such set exists we set 1=<. The events [1=4] then depend only
on the configuration in Z2"4. By the strong Markov property of +even , we
conclude that on [1{<] the distribution of colors of the occupied
clusters meeting 2 is governed by the Gibbs distribution in 1 with empty
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boundary condition. The symmetry properties of the latter thus imply that
these colors are conditionally independent and uniformly distributed.
Letting ' � 0 and 2 A Z2 we find that this statement holds in fact for all
occupied clusters.

By construction, +odd is obtained from +even by a one-step translation,
and thus has the analogous properties.

(b) The proof of this part is quite similar. Pick any z # Aord and
+ # G� per(z, q) such that +(0 # V(Gord) | 0 # V(G))�1�2. Since + is invariant
under permutations of colors it then follows in the same way that

p#+(0 # S(Ga))�
1
q \

1
2

&=+>0

so that we can define the conditional probabilities +a=+( } | S(Ga){<) #
G(z, q), a # [1,..., q]. Also

+(S(Ga){<)�
1
q

+(0 # S(Gord))+
1
q

+(0 � S(G))�p+
=
q

whence +a(0 # S(Ga))�p�( p+=�q)�1&2= and *(+a)�+a(0 # V(Ga))�
1&2=. K

According to the preceding proposition, Theorem 2.1 will be proved
once we have shown that there exists a critical activity zc(q) # ]q�5, 5q[
such that Astag=[q0 �q, zc(q] and Aord=[zc(q), �[. To this end we will
establish the following items:

(A1) Astag _ Aord=[q0�q, �[.

(A2) Astag and Aord are closed.

(A3) Aord & [q0 �q, q�5]=<.

(A4) Astag & [5q, �[=<.

(A5) |Astag & Aord |�1.

Statement (A1) follows trivially from the definitions of Astag and Aord .
Assertion (A2) is also obvious because these definitions involve only local
events, and the graph of the correspondence z � G� per(z, q) is closed by
definition.

Property (A3) corresponds to the discovery of Runnels and
Lebowitz(17) that staggered phases do exist in a nontrivial activity regime,
and follows directly from the next result.
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Lemma 3.4. For z�q�5 and + # G� per(z, q) we have

+(0 # V(Gord) | 0 # V(G))<1�2.

Proof. Consider the Gibbs distribution +z, q
L, per in the box 4L with

periodic boundary condition, and let

Gord, L=[_ # 0L, per : _C(i) # Gord for all i # 4L] (10)

here we write 0L, per for the set of admissible configurations in the torus 4L

(including nearest-neighbor bonds between the left and the right sides as
well as between the top and bottom sides of 4L), and C(i) for the image
C+i mod 4L of C under the periodic shift of 4L by i. (As Gord is reflection-
symmetric, we can omit the reflections ri which appear in (5).) The
chessboard estimate (cf. Corollary (17.17) of ref. 9) then implies that

+z, q
L, per(0 # V(Gord))�+z, q

L, per(Gord, L)1�v(L).

We compare the latter probability with that of the event

Geven, L=[_ # 0L, per : ri_C(i) # Geven for all i # 4L] (11)

This gives

+z, q
L, per(Gord, L)�+z, q

L, per(Gord, L)�+z, q
L, per(Geven, L)=zv(L)qz&v(L)�2q&v(L)�2

because Gord, L contains only the q distinct close packed monochromatic
configurations, while for _ # Geven, L the v(L)�2 particles can have inde-
pendent colors. Taking the v(L)th root and letting L � � we find for
+ # G� per(z, q)

+(0 # V(Gord))�(z�q)1�2�5&1�2<(1&$)�2

The last inequality comes from the choice of $. Since +(0 # V(G))�1&$ by
Proposition 3.1, the lemma follows. K

Assertion (A4) corresponds to the well-known fact that q ordered
phases exist when the activity is large. For q=2 this was already shown
by Lebowitz and Callavotti, (12) and for arbitrary q by Runnels and
Lebowitz.(17) This is again a simple application of the chessboard estimate.

Lemma 3.5. For z�5q and + # G� per(z, q) we have

+(0 # V(Gstag) | 0 # V(G))<1�2
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Proof. Let Gord, L be as in (10), and define Gstag, L analogously. By
the chessboard estimate we find

+z, q
L, per(0 # V(Gstag))�+z, q

L, per(Gstag, L)1�v(L)

�(+z, q
L, per(Gstag, L)�+z, q

L, per(Gord, L))1�v(L)

�21�v(L)z1�2q1�2z&1q&1�v(L)

because Gstag, L=Geven, L _ Gord, L contains 2qv(L)�2 distinct configurations of
particle density 1�2. We can now complete the argument as in the preceding
proof. K

For the proof of (A5) we will use a thermodynamic argument, namely
the convexity of the pressure as a function of log z. For any translation
invariant probability measure + on 0 we consider the entropy per volume

s(+)=lim
|4|

|4|&1 S(+4)

Here we write +4 for the restriction of + to 04 ,

S(+4)=& :
_ # 04

+4(_) log +4(_)

is the entropy of +4 , and the notation |4| � � means that 4 runs through
a specified increasing sequence of square boxes; for the existence of s(+) we
refer to refs. 9 and 16.

We define the thermodynamic pressure by

P(log z)=max
+

[*(+) log z+s(+)] (12)

the maximum extends over all translation invariant probability measures +
on 0, and *(+)=+(_0{0) is the associated mean particle density, cf. (9).
(Since 0 is defined as the set of all admissible configurations, the hard-core
intercolor repulsion is taken into account automatically.) By definition, P is
a convex function of log z, and the variational principle (see Theorems 4.2
and 3.12 of ref. 16) asserts that the maximum in (12) is attained precisely
on G3 (z, q), the set of all translation invariant elements of G(z, q). By
standard arguments (cf. Remark (16.6) and Corollary (16.15) of ref. 9) it
follows that P is strictly convex, and

P$&(log z)�*(+)�P$+(log z) for all + # G3(z, q) (13)

here we write P$& and P$+ for the left-hand resp. right-hand derivative
of P. By strict convexity, P$& and P$+ are strictly increasing and almost
everywhere identical. Assertion (A5) thus follows from the lemma below.
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Lemma 3.6. For each z # Astag & Aord we have P$&(log z)�2�3�
P$+(log z).

Proof. This has already been shown essentially in Proposition 3.3.
Pick any z # Astag & Aord and let + # G� per(z, q) be as in the proof of Proposi-
tion 3.3(a). Consider the conditional probability +stag=+( } | S(Gstag){<)
= 1

2 +even+ 1
2 +odd . By the arguments there, +stag is well-defined, belongs to

G3 (z, q), and satisfies *(+stag)�1�2+=<2�3. On the other hand, the
measures +a constructed in Proposition 3.3(b) also belong to G3 (z, q) and
satisfy *(+a)�1&2=>2�3. The lemma thus follows from (13). K

We can now complete the proof of Theorem 2.1. Properties (A1) to
(A4) together imply that Astag & Aord{<. This is because the interval
[q0 �q, �[ is connected and therefore cannot be the union of two disjoint
non-empty closed sets. Combining this with (A5) we find that Astag & Aord

consists of a unique value zc(q). In particular, Aord cannot contain any
value z<zc(q) because the infimum of such z's would belong to
Astag & Aord ; likewise, Astag does not contain any value z>zc(q). Hence
Astag=[q0�q, zc(q)] and Aord=[zc(q), �[, and Theorem 2.1 follows from
Proposition 3.3.

3.2. Contour Estimates

In this subsection we will prove Proposition 3.1. Consider the set 0C

of all admissible configurations in C, and the set B=0C"G of all bad con-
figurations in C. We split B into the following subsets which are dis-
tinguished by their occupation pattern:

v B0=[( 0
0

0
0)], the singleton consisting of the empty configuration in C.

v B1=[( 0
a

0
0), ( 0

0
a
0),( 0

0
a
0), ( a

0
0
0) : 1�a�q], the set of all configura-

tions with a single particle in C.

v B2=[( a
0

a
0), ( a

a
0
0),( 0

a
0
a), ( 0

0
a
a) : 1�a�q], the set of admissible con-

figurations for which one side of C is occupied, and the other side is empty.

v B3=[( a
0

a
0), ( a

a
a
0),( a

a
0
a), ( 0

a
a
a) : 1�a�q], the set of all admissible

configurations with three particles in C.

We then clearly have B=�3
k=0 Bk . The four different kinds of ``badness''

of a plaquette will be treated separately in the three lemmas below. We
start with the most interesting case of plaquettes with three particles.

For any L�1 and k # [0,..., 3] let

Bk, L=[_ # 0L, per : _C(i) # Bk for all i # 4L]
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where C(i) is as in (10). Consider the quantities pz, q
k, L=+z, q

L, per(Bk, L)1�v(L)

and pz, q
k =lim supL � � pz, q

k, L .

Lemma 3.7. pz, q
3 �q&1�56 for all z>0 and q # N.

Proof. Fix any integer L�1 and consider the set B3, L of configura-
tions _ in 4L having a single empty site in each plaquette. We claim that
|B3, L |<q214L+2. First of all, for each _ # B3, L the occupied sites in 4L

form a connected set, so that all particles have the same color. Thus there
are only q possible colorings, and we only need to count the possible
occupation patterns for _ # B3, L . It is easy to see that the plaquettes C(i)
with _(i)=0 form a partition of 4L . For each such partition, the plaquettes
are either arranged in rows or in columns. In the first case, each row is
determined by its parity (even or odd), namely the parity of i1 for each C(i)
in this row; likewise, in the second case each column is determined by its
parity. We can therefore count all such partitions as follows. There are 4
possibilities of choosing the plaquette containing the origin. If this pla-
quette is fixed, there are no more than 214L&1 possibilities of arranging all
plaquettes in rows and choosing the parity of each row. Similarly, there are
at most 212L&1 possibilities of arranging the plaquettes in columns. The
number of such partitions is therefore no larger than 4(214L&1+212L&1),
and the claim follows.

To estimate +z, q
L, per(B3, L) we will rearrange the positions of all particles

so that many different colors become possible. More precisely, we divide
4L into (3L)(4L) rectangular cells 2( j) of size 8_7. Let 20( j) be the
rectangular cell of size 7_6 situated in the left lower corner of 2( j), and
consider the set

F3, L=[_ # 0L, per : _{0 on 20( j), _#0 on 2( j)"20( j) for all j ]

Since |2( j)"20( j)|=8 } 7&7 } 6=|2( j)|�4 for all j, each _ # F3, L has par-
ticle number 3v(L)�4, just as the configurations in B3, L . As the colors of the
particles in the blocks 20( j) can be chosen independently, we have |F3, L |
=q12L2

=qv(L)�56. (The above construction, together with a similar con-
struction in the proof of the next lemma, explains our choice of the
rectangle 4L .) Now we can write

+z, q
L, per(B3, L)�

+z, q
L, per(B3, L)

+z, q
L, per(F3, L)

=
|B3, L |
|F3, L |

�214L+2q1&v(L)�56

The proof is completed by taking the v(L)th root and letting L � �. K

57Entropy-Driven Phase Transitions in Multitype Lattice Gas Models



Next we estimate the probability of plaquettes with two adjacent par-
ticles at one side of C.

Lemma 3.8. pz, q
2 �q&1�12 for all z>0 and q # N.

Proof. Fix any L�1, and let _ # B2, L . Then the particles are either
arranged in alternating occupied and empty rows, or in alternating
occupied and empty columns. The colors in all rows resp. columns can be
chosen independently of each other. Hence |B2, L |=2(q14L+q12L)�4q14L.
Moreover, each _ # B2, Lhas particle number v(L)�2. As in the last proof,
we construct a set F2, L of configurations with the same particle number but
larger color entropy as follows. (We could choose F2, L=Geven, L but we
prefer here a different choice which is similar to that of F3, L and can also
be used in the proof of Theorem 2.2.)

We partition 4L into (8L)(7L) rectangular cells 2( j) of size 3_4, and
let 20( j) be the rectangular cell of size 2_3 in the left lower corner of 2( j).
We then define

F2, L=[_ # 0L, per : _{0 on 20( j), _#0 on 2( j)"20( j) for all j ]

Since |2( j)"20( j)|=3 } 4&2 } 3=|2( j)|�2 for all j, each _ # F2, L has par-
ticle number v(L)�2. As the particle colors in the blocks 20( j) can be
chosen independently, we have |F3, L |=q56L2

=qv(L)�12. As in the last proof,
we thus find

+z, q
L, per(B2, L)�

+z, q
L, per(B2, L)

+z, q
L, per(F2, L)

=
|B2, L |
|F2, L |

�4q14L&v(L)�12

Taking the v(L)th root and letting L � � we obtain the result. K

Finally we consider the probability of ``diluted'' plaquettes with a
single or no particle.

Lemma 3.9. pz, q
0 �(zq)&1�2 and pz, q

1 �(zq)&1�4 for all z>0, q # N.

Proof. We consider first the case of no particle. For each L�1 we
can write

+z, q
L, per(B0, L)�

+z, q
L, per(B0, L)

+z, q
L, per(Geven, L)

=
1

zv(L)�2qv(L)�2

where Geven, L is defined by (11). The identity follows from the facts that
B0, L contains only the empty configuration, whereas each configuration in
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Geven, L consists of v(L)�2 particles with arbitrary colors. The first result is
thus obvious.

Turning to the case of a single particle per plaquette, we note that
each _ # B1, L consists of v(L)�4 particles with arbitrary colors, and there
are no more than 214L+2 distinct occupation patterns for these particles;
the latter follows as in the proof of Lemma 3.7 (by interchanging empty
and occupied sites). Hence

+z, q
L, per(B1, L)�

+z, q
L, per(B1, L)

+z, q
L, per(Geven, L)

�
214L+2zv(L)�4qv(L)�4

zv(L)�2qv(L)�2

and the second result follows by taking the v(L)th root and letting
L � �. K

Proof of Proposition 3.1. Let + # Gper(z, q) and a finite 2/Z2 be
given. Then we can write

+(2 & V(G)=<)= :
#: 2 � [0,..., 3]

+(_ : _C+i # B#(i) for all i # 2)

� :
#: 2 � [0,..., 3]

lim sup
L � �

+z, q
L, per(_ : _C(i) # B#(i) for all i # 2)

� :
#: 2 � [0,..., 3]

lim sup
L � �

`
i # 2

pz, q
#(i), L

�\ :
3

k=0

pz, q
k +

|2|

In the third step we have used the chessboard estimate, see
Corollary (17.17) of ref. 9. Inserting the estimates of Lemmas 3.7, 3.8 and
3.9 and choosing q0 as in (8) we get the result. K

4. PROOF OF THEOREM 2.2

Here we indicate how the proof of Theorem 2.1 can be adapted to
obtain Theorem 2.2. First of all, the different geometry of the present model
leads to a new classification of good and bad plaquettes: the ordered con-
figurations in Gord are still good, but the (former good) configurations in
Gstag are now bad and will be denoted by Bstag , while the configurations in
B1 are now good, and we set Gdis=B1 .

We first need an analog of the contour estimate, Proposition 3.1.
Remarkably, the estimates of Lemmas 3.7 and 3.8 carry over without any
change. To deal with Bstag , we can proceed exactly as in Lemma 3.8, noting
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that each configuration in Bstag, L is monochromatic, so that |Bstag, L |=2q.
This shows that also pz, q

stag�q&1�12. Finally, for B0 we compare the set B0, L

with

F1, L=[_ # 0L, per : _i{0 iff i # 2Z2] (14)

this gives pz, q
0 �(zq)&1�4. The counterpart of Proposition 3.1 thus holds as

soon as q0 is so large that q&1�56
0 +2q&1�12

0 +q&1�4
0 �$.

With the contour estimate in hand we can then proceed as in Sec-
tion 3.1. Proposition 3.3 carries over verbatim; the only difference is that
Gstag is replaced by Gdis (which is not divided into two parts with disjoint
side-projections), and *(+dis)� 1

4 (1&2=)+2== 1
4+3=�2. By the latter

estimate, the assumption =<1�6 is slightly stronger than necessary for
adapting Lemma 3.6 to the present case, but we stick to it for simplicity.

The counterparts of Lemmas 3.4 and 3.5 are obtained as follows. On
the one hand, we have the estimate

+z, q
L, per(Gord, L)�+z, q

L, per(Gord, L)�+z, q
L, per(F1, L)�zv(L)qz&v(L)�4q&v(L)�4

showing that

+(0 # V(Gord))�(z3�q)1�4�3&3�4<(1&$)�2

when + # G� per(z, q) and z�q1�3�3. On the other hand, as in Lemma 3.9 we
find

+z, q
L, per(Gdis, L)�+z, q

L, per(Gdis, L)�+z, q
L, per(Gord, L)�

214L+2zv(L)�4qv(L)�4

zv(L)q

and therefore

+(0 # V(Gdis))�(q�z3)1�4�3&3�4<(1&$)�2

when + # G� per(z, q) and z�3q1�3. With these ingredients it is now
straightforward to complete the proof of Theorem 2.2 along the lines of
Section 3.1.

5. PROOF OF THEOREM 2.3

Here we consider the Widom�Rowlinson model with molecular hard-
core exclusion. We look again at good configurations in plaquettes. The set
0C of admissible configurations in C splits into the good sets

Gord=Geven _ Godd= .
1�a�q

Ga, even _ Ga, odd# .
1�a�q {\

0
a

a
0+=_ {\a

0
0
a+=
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of ordered staggered configurations, the good set

Gdis=B1={\0
a

0
0+ , \0

0
0
a+ , \0

0
a
0+ , \a

0
0
0+ : 1�a�q=

of disordered configurations, and the only bad set B0 consisting of the
empty configuration. The main technical problem which is new in the pre-
sent model is that the sets Gord and Gdis fail to have disjoint side-projec-
tions (although this is the case for the sets Ga, even and Ga, odd). We therefore
cannot simply consider sets of good plaquettes, but need to consider the
sets of ``good plaquettes with neighbors in the same phase.'' Accordingly,
we introduce the random sets

V� (Gord)=[i # V(Gord) : i+(1, 0), i+(0, 1) # V(Gord)]

V� (Gdis)=[i # V(Gdis) : i+(1, 0), i+(0, 1) # V(Gdis)]

and V� (G)=V� (Gord) _ V� (Gdis). By definition, a sea in V� (G) then contains
either a sea in V� (Gord) or a sea in V� (Gdis). To establish the existence of
such a sea we use the following contour estimate.

Proposition 5.1. For any $>0 there exists a number q0 # N such
that

+(2 & V� (G)=<)�$ |2|

whenever q�q0 , zq�q1�7
0 , + # Gper(z, q) and 2/Z2 is finite.

Proof. Let us start by introducing some notations. We consider the
sublattices

L1, even=[i=(i1 , i2) # Z2 : i1 is even], L1, odd=Z2"L1, even

and their rotation images L2, even and L2, odd which are similarly defined.
We also introduce the horizontal double-plaquette

D1=C _ (C+(1, 0))=[0, 1, 2]_[0, 1]

and the event

E1=[_ # E D1 : _C # Gord , _C+(1, 0) # Gdis , or vice versa]

that the two sub-plaquettes of D1 are good but of different type. E1 thus
consists of the configurations of the form ( a

0
0
a

0
0) with 1�a�q, and their
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reflection images. In the same way, we define the vertical double-plaquette
D2=C _ (C+(0, 1)) and the associated event E2 . With these notations we
have

Z2"V� (G)/ .
7

k=1

Wk

where the random subsets Wk of Z2 are given by

W1=V(B0), W2=V(B0)&(1, 0), W3=V(B0)&(0, 1)

W4=[i # L1, even : _D1+i # E1], W5=[i # L1, odd : _D1+i # E1]

W6=[i # L2, even : _D2+i # E2], W7=[i # L2, odd : _D2+i # E2]

(The sets Wk are not necessarily disjoint.) So, for each + # Gper(z, q) we can
write

+(2 & V� (G)=<)� :
21 _ } } } _ 27=2

min
1�k�7

+(2k/Wk) (15)

where the sum extends over all disjoint partitions of 2. We estimate now
each term.

Consider first the case k=1. Just as in Lemma 3.9 we obtain from the
chessboard estimate

+(21/W1)1�|21| �lim sup
L � �

+z, q
L, per(B0, L)1�v(L)

+z, q
L, per(F1, L)1�v(L) =(zq)&1�4

where F1, L is given by (14). The same estimate holds in the cases k=2, 3
because these merely correspond to a translation.

Next we turn to the case k=4. Let L be so large that 4L#24 . Using
reflection positivity in the lines through the sites of L1, even we conclude
from the chessboard estimate that

+z, q
L, per(24/W4)1�|24 |�+z, q

L, per(E1, L)2�v(L)

for the event

E1, L=[_ # 0L, per : _D1(i) # E1 for all i # 4L & L1, even]

In the above, D1(i) stands for the image D1+i mod 4L of D1 under the
periodic shift by i of the torus 4L . Each _ # E1, L has the following structure:
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Fig. 1.

every fourth vertical line (with horizontal coordinate either 0 or 2 modulo 4)
is empty, and on each group of three vertical lines between these empty
lines every second site is occupied, with the coordinates of occupied sites
being either even-odd-even in these three lines, or odd-even-odd; see Fig. 1.

Of course, the interaction implies that the color of particles is constant
in each of these groups of three vertical lines. Consequently, each such _
has particle number 3v(L)�8, and |E1, L |=2(2q)6L; recall the definition (6)
of 4L .

We now make a construction similar to that in Lemma 3.7. We divide
4L into 12L2 rectangular cells 2( j) of size 8_7. Let 20( j) be the rectan-
gular cell of size 7_6 situated in the left lower corner of 2( j), and consider
the set

FL=[_ # 0L, per : _i{0 iff i1+i2 is even and i # 20( j) for some j ]

Since |2( j)"20( j)|=|2( j)|�4 for all j, each _ # FL has particle number
3v(L)�8, just as the configurations in E1, L . As the colors of the particles in
the blocks 20( j) can be chosen independently, we have |FL |=q12L2

=
qv(L)�56. Hence

+z, q
L, per(E1, L)�

+z, q
L, per(E1, L)

+z, q
L, per(FL)

=
|E1, L |
|FL |

�2(2q)6L q&v(L)�56

and therefore, by taking the 2�v(L)th power and letting L � �, we obtain

+(24/W4)1�|24 |�q&1�28

The same estimate holds in the cases k=5, 6, 7, as these are obtained by
a translation or interchange of coordinates.
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We now combine all previous estimates as follows. Let q0 be so large
that 7(q&1�28

0 )1�7<$, and suppose that q�q0 and zq�q1�7
0 . Then +(2k/Wk)

�q&|2k |�28
0 for all k and thus, in view of (15) and since |2k |�|2|�7 for at

least one k,

+(2 & V� (G)=<)� :
21 _ } } } _ 27=2

(q&1�28
0 ) |2|�7<$ |2|

The proof of the contour estimate is therefore complete. K

To prove Theorem 2.3 we can now proceed as in Section 3.1. Let S� (G)
be the largest sea in V� (G) if the latter contains a sea, and S� (G)=0
otherwise. It is then immediate that a counterpart of Proposition 3.2 holds,
and the definition of V� (G) implies that

[S� (G){<]=[S� (Gdis){<] _ [S� (Gord){<]

where the two sets on the right-hand side are disjoint. Moreover,

[S� (Gord){<]/ .
q

a=1

[S(Ga, even){<] _ [S(Ga, odd){<]

By the argument of Proposition 3.3 we thus obtain the existence of 2q
ordered phases (as described in Theorem 2.3(i)) whenever z is such that
+(0 # V(Gord))�+(0 # V(Gdis)) for some + # G� per(z, q), and the existence of
a disordered phase +dis whenever the reverse inequality holds for such a +.
We have *(+dis)� 1

4+3=�2 and *(+a, even)=*(+a, odd)� 1
2&=. The topological

argument of Section 3.1 together with obvious counterparts of Lemmas 3.4
and 3.5 then show that both cases must occur simultaneously for some
z=zc(q), and this z is unique by the convexity argument of Lemma 3.6.
(For the latter we need to assume that =<1�10.)

We conclude this section with a comment on the model with nearest-
particle color repulsion and a molecular hard-core exclusion between next-
nearest neighbors.

Comment on Remark 2.3 (3). If the roles of 8 and U are inter-
changed, the good ordered configurations in C are those with two particles
of the same color on one side of C, and no particle on the opposite side;
we call this set again Gord . For large z, one can easily establish a contour
estimate implying the existence of a sea S(Gord), and thus by symmetry also
the existence of the four phases mentioned in Remark 2.3 (3). The disordered
good plaquettes are again described by the set Gdis . As in the case of the
Hamiltonian (4), the sets Gord and Gdis have no disjoint side-projections.
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However, whereas in that case we were able to show an entropic disadvan-
tage in having adjacent Gord - and Gdis -plaquettes, this is not true in the
present case. The configurations resulting from iterated reflections of a
double plaquette of type ( b

v
b
v

b
b) have the maximal entropy possible for this

particle number. Therefore the system can freely combine ordered and
disordered plaquettes, and our argument for a first-order transition breaks
down. So it seems likely that the transition from the ordered to the disor-
dered phase is of second order.

6. PROOF OF THEOREM 2.4

The analysis of the plane-rotor Widom�Rowlinson model is very
similar to that of the standard Widom�Rowlinson model; only a few
modifications are necessary. We define again the set 0C of admissible con-
figurations in the plaquette C in the obvious way, introduce the sets Gstag

=Geven _ Godd as in Section 3.1 (replacing [1,..., q] by S 1), and set Gord=
[_ # 0C : _i # S1 for all i # C] and G=Gord _ Gstag . The main task is to
obtain a counterpart of the contour estimate, Proposition 3.1. To this end
we consider the same classes Bk , k # [0,..., 3] of bad configurations as in
Section 3.2 (with the obvious modifications), and the sets Bk, L and the
associated quantities pz, :

k .
To deal with the case k=3 we proceed as in Lemma 3.7, arriving at

the inequality

+z, :
L, per(B3, L)�

+z, :
L, per(B3, L)

+z, :
L, per(F3, L)

=
&4(B3, L)
&4(F3, L)

Now, &4(B3, L)�214L+2(2:)3v(L)�4&1; the first factor estimates the number
of possible occupation patterns, and the second term bounds the proba-
bility that the configuration is admissible (by keeping only the bonds in a
tree spanning all occupied positions). On the other hand, &4(F3, L)�
(:7 } 6&1)v(L)�56, as can be seen by letting the spins in each block 20(k)
follow a ``leader spin'' up to the angle 2?:�2. Hence

&4(B3, L)
&4(F3, L)

�214L+223v(L)�4:v(L)�56&1

and therefore pz, :
3 �23�4:1�56.

In the case k=2 we proceed as in the proof of Lemma 3.8. On the one
hand,

&4(B2, L)�2((2:)24L&1)14L+2((2:)28L&1)12L�4(2:)v(L)�2&14L
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since the spins are ordered in separate rows or columns, and 2:<1. On the
other hand, &4(F2, L)�(:2 } 3&1)v(L)�12 by the same argument as above. Hence

+z, :
L, per(B2, L)�

&4(B2, L)
&4(F2, L)

�4 } 2v(L)�2:v(L)�12(2:)&14L

and therefore pz, :
2 �21�2:1�12.

Finally, for k=0 we obtain

+z, :
L, per(B0, L)�

+z, :
L, per(B0, L)

+z, :
L, per(Geven, L)

=
1

zv(L)�2

and thus pz, :
0 �z&1�2. Likewise, in the case k=1 we get as in Lemma 3.9

+z, :
L, per(B1, L)�

+z, :
L, per(B1, L)

+z, :
L, per(Geven, L)

�
214L+2zv(L)�4

zv(L)�2

and thereby pz, :
1 �z&1�4. Combining these estimates as in the proof of

Proposition 3.1 we arrive at the counterpart of (7) as soon as :0 is so small
that

23�4:1�56
0 +21�2:1�12

0 +:1�4
0 +:1�2

0 �$

and :�:0 , z�1�:0 .
To complete the proof of Theorem 2.4 as in Section 3.1 we still need

to adapt Lemmas 3.4 and 3.5. Writing

+z, :
L, per(Gord, L)�

+z, :
L, per(Gord, L)

+z, :
L, per(Geven, L)

�
zv(L)(2:)v(L)&1

zv(L)�2

we find that for z�:&2�18 and + # G� per(z, :)

+(0 # V(Gord))�z1�22:�2�- 18<(1&$)�2.

Likewise, since

+z, :
L, per(Gstag, L)�

+z, :
L, per(Gstag, L)

+z, :
L, per(Gord, L)

�
2zv(L)�2

zv(L):v(L)&1

we see that for z�5:&2 and + # G� per(z, :)

+(0 # V(Gstag))�z&1�2:&1<(1&$)�2

The remaining arguments of Section 3.1 can be taken over with no change
to prove Theorem 2.4.
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